Website Accessibility Checklist
Ul Desigh Document

Team 2: Jacob Mathison, Emily Buzle, Taylor Williams, Jadyn Smith, Javid Ditty

Table of Contents

1.0 Introduction
1.1 Goals and Objectives
1.2 Statement of Scope
1.3 Software Context
1.4 Major Constraints

2.0 Data Design
2.1 Internal Software Data Structure
2.2 Global Data Structure
2.3 Temporary Data Structure
2.4 Database Description

3.0 Architectural and Component-Level Design

3.1 Program Structure
3.1.1 Architecture Diagram
3.1.2 Alternatives

3.2 Description of Components
3.2.1 Question
3.2.2 ChecklistHandler
3.2.3 ChecklistView
3.2.4 ResultView

3.3 Software Interface Description
3.3.1 External Machine Interfaces
3.3.2 External System Interfaces
3.3.3 Human Interface

4.0 User Interface Design
4.1 Description of the User Interface
4.1.1 Screen Images
4.1.2 Objects and Actions
4.2 Interface Design Rules
4.3 Components Available
4.4 UIDS Description

5.0 Restrictions, Limitations, and Constraints

6.0 Testing Issues
6.1 Classes of Tests
6.2 Expected Software Response
6.3 Performance Bounds
6.4 ldentification of Critical Components

© © © o 00 O OO O A DA WO OLOW

N NDM NN -2 @A A a
O OO0 O o0 ~NN-—-~ -~ 0

N NDNDNDNDNDNDDN
© © oo NI~ DNDN

W
o

W w w ww
AWN A

7.0 Appendices
7.1 Requirements Traceability Matrix
7.2 Packaging and Installation Issues
7.3 Design Metrics to be Used
7.4 Supplementary Information

34
34
35
35
36

1.0 Introduction
1.1 Goals and Objectives

The goal of this software is to facilitate the assessment process of a website by
using an accessibility checklist in the form of a questionnaire. It will allow the users to
evaluate the quality and effectiveness of an app. This will be achieved through a
website that allows users to answer questions regarding the organization and
presentation of content, the functionality of website components, efficiency of use,
ability to find relevant information, as well as overall aesthetics. These questions will be
evaluated and interpreted to provide the user with a score that shows the quality of the

accessibility of the website.

1.2 Statement of Scope

Users
Users of this software will be web application testers and end users (referenced

as users in this document) that will evaluate website accessibilities with a questionnaire.

Inputs

Users will provide “yes,” “no,” and “n/a” answers to each question in the

accessibility checklist.

Processing Functionality

User responses will be stored temporarily in order to compute the necessary
calculations to determine the score. But results and responses will not be saved long-
term. This means that the only data storage will be for the questions. This will be stored
in a JSON file.

Outputs

There will be three pages for this application. The first will be the user input
screen where the questions will be presented, described, and answered. Also on this
screen will be the title and a short description of the software scope and functionality.

The second screen will be the results screen which will describe the methods and
equations used to find the totals for each section of the questionnaire. The final total will
be presented as well as final insights based on the score. There will also be a page for
the user manual as well, which will answer any questions the user may have and

display the calculations used to find the resulting score.

1.3 Software Context

This questionnaire will allow for the easy quantification of the quality of the
accessibility of a web application. For users and developers testing and providing
feedback on applications that they are using or making, this provides a consistent
source of feedback that can be replicated. This makes the testing and reviewing
process more objective and allows people to return to our software and take the
qguestionnaire again to gauge improvement on their development. We will use the Web
Content Accessibility Guidelines (WCAG), specifically where it applied to web
applications. This is a set of documents formulated by the Accessibility Guidelines
Working Group which covers recommendations for making web content more
accessible, and many of the points covered apply to apps by extension. Another source
that we will use as a guide to formulate our questions in order to evaluate the software
of other mobile applications is the WC3 Mobile Application Best practices. It is different
from the mobile browsing best practices because it considers the development of web
applications for mobile devices, which is what our accessibility checklist will be

evaluating.

1.4 Major Constraints

One constraint is related to the number and types of questions that the user is
required to answer to determine the quality of their application’s accessibility. The
development team will determine the types of questions that need to be answered to
determine the state of the user’s application.

The questionnaire will be also limited to yes, no and n/a questions. Each
question will need to provide hints that will elaborate the question for the user to help
them determine if their application answers the question or not. Each hint will only
provide guidance on the current question. For each question, the user only has to click

the yes or no option to answer the question.

A weighted table will be designed to calculate how important each question is to
create an accessible application. It will be constrained based on what the developers
determine is important to create an accessible application. The rating that the user will

be given on a scale of bad, fair, good, great or excellent with the overall score.

2.0 Data Desig

n

2.1 Internal Software Data Structure

Question — Model that represents a question that can be put into the checklist.

Attribute/Method

Definition

- QUESTIONS: Object

Questions read from the database file using read(path). For
information about its structure, see Section 2.4.

- id: int

Unique number that is used to identify a question.

- content: String

That which is being asked by a question.

- answer: boolean

That which is given in response to a question.

- weight: int Impact that the question has on the accessibility score.
- hint: String Elaboration on the content of a question.
- tip: String Guide for following guidelines that a question implies.

+ constructor(id: int)

Constructs a question object and initializes it with the
question that has the id in QUESTIONS.

- read(path: String):
void

Reads object at database file located at path and stores the
result in QUESTIONS. For information about its structure,
see Section 2.4.

2.2 Global Data Structure

ChecklistHandler — Controller that handles the checklist and its interactions.

Attribute/Method

Definition

- questions: Question(]

Questions that are on the checklist.

+ constructor()

Constructs a ChecklistHandler object, initializing its
question field using its getQuestions() method.

+ getQuestions(): Question(]

Converts the QUESTIONS attribute in the Question
class into Question objects.

+ sendQuestions(): void

Sends questions to the ChecklistView class to render.

+ getScore():int

Calculates the accessibility score from each
question.answer in ChecklistHandler.questions and
returns it.

+ sendScore(score: int): void

Sends score to the ResultView class to render.

+ sendTips(ids: String[]): void

Retrieves tips from the questions with an id in ids and
sends them to the ResultView class to render.

+ getNo(): Question([]

Gets each question in ChecklistHandler.questions
with a “No” answer and returns them.

+ getAnswers(): void

Updates each question.answer in
ChecklistHandler.questions with the corresponding
answer in questionnaire.

+ submit(href: String): void

Gets the accessibility score and the ids of all the
questions with “No” answers; attaches them as query
strings to href; and directs the user to the resulting
url.

+ clear(): void

Send a request to ChecklistView to clear the
questionnaire.

ChecklistView — View that represents the checklist.

Attribute/Method

Definition

+ renderQuestions(questions:
{id:String : {content: String,
hint: String } }): void

Renders the Ul with all the questions in questions.

+ clear(): void

Resets all the answer radio button groups in the
questionnaire to the “N/A” answer.

ResultView — View that represents the checklist results.

Attribute/Method

Definition

+ renderScore(score: int, rating: int):

void

Renders the accessibility score, the
accessibility rating, and the score bar
progress with score and rating.

Renders the tips section with all the tips in

+ renderTips(tips: String[]): void tips

2.3 Temporary Data Structure

No temporary data structures are used in this project.

2.4 Database Description

==

ID: {
"content”: "STRING",
"weight": INTEGER,

Because only question ids, contents, weights, hints,

and tips require permanent storage and JSON files

have a high compatibility with JavaScript, this "hint": "STRING",
project will use a JSON file as a database. The file "tip": "STRING"
will have the format shown in the image titled “2.4 - g

ID: {

Database Format” with the id as the primary key. "content™: "STRING”

"weight": INTEGER,
"hint": "STRING",
"tip": "STRING"

}s

ID: {
"content™: "STRING",
"welght™: INTEGER,
"hint": "STRING",
"tip": "STRING"

}

}

2.4 - Database Format

3.0 Architectural and Component-Level Design

3.1 Program Structure

For this project, we have selected the MVC (Model View Controller) Architecture.
The Model component contains content and logic concerning the manipulation of data,
and it has sole access to the database. The View component handles the visual aspect
of the website, or the Ul, and it portrays the data model to the user. The Controller
component connects the Model and View, handling the real-time data requests from the
browser. For us, this means that it will handle answer collection, and the calculation of

the accessibility score, values that will never be stored within the database.

3.1.1 Architecture Diagram

Controller

A

Model Data

User Request / Data—»| ChecklistHandler Update Request

User Data

Client

Database

Model

Update Request g
I) <_(’.luas:u:m_
Model Data Question Dol Question
Database

View

ChecklistView

HTML Dat,

ResultView

3.1.2 Alternatives

We selected the MVC architecture because:

e Itis a popular web development architecture.

e |t separates the project into three distinct components that will improve unit
testing and maintenance tasks.

e It reduces the coupling between components, improving the reusability of each
component.

We considered alternative architectures such as:

e Data-Centered — Because our project relies on a database that contains
questions, a data store is central to our project. However, data-centered
architectures are designed for projects that frequently access and update data
within the store. Our project does not modify the store directly, and it only
accesses it once at startup, contradicting the purpose of this architecture.

e Object-Oriented — Because our project’s functions can be captured by distinct
and well-defined objects and their communication, this architecture could have
been a good choice for our project. However, it does not define object roles as
distinctly as the MVC architecture, making it more difficult to understand and

maintain.

10

3.2 Description of Components

3.2.1 Question

3.2.1.1 Processing Narrative (PSPEC)

Before instantiation, the Question class initializes its QUESTIONS field with the
object contained in the database file. QUESTIONS is initialized using the read
method. Instantiation starts once a question id is passed to the Question class
constructor. The constructor retrieves the data from QUESTIONS that have a
matching id, creates a question object, and initializes the id, content, weight, hint,
and tip fields of the question object with the data. The answer field is initialized
with a null value.

3.2.1.2 Interface Description

Question receives as input an id from a ChecklistHandler object and an id,
content, weight, hint, and tip from the database file. Question sends as output its
id, content, weight, hint, answer, and tip fields to the ChecklistHandler.

3.2.1.3 Description of Sub-Components
3.2.1.3.1 constructor(id: int)

3.2.1.3.1.1 Interface Description

It receives as input an id from a ChecklistHandler object and
content, weight, hint, and tip from Question.QUESTIONS. It sends
as output a Question object.

3.2.1.3.1.2 Algorithmic Model

Function constructor(id: int)
this.id = id
this.content = Question.QUESTION]Jid].content
this.weight = Question.QUESTION[id].weight
this.hint = Question. QUESTIONS]Jid].hint
this.tip = Question.QUESTIONSJid].tip
this.answer = null

End

3.2.1.3.1.3 Restrictions/Limitations

11

To operate correctly, the database file must exist, and the system
must be able to access it. It is used to define the QUESTIONS field.

3.2.1.3.1.4 Local Data Structures

It uses the QUESTIONS, id, content, weight, hint, tip, and answer
fields.

3.2.1.3.2 read(path: String): Object
3.2.1.3.2.1 Interface Description

It receives as input a path to the database file with the structure
described in section 2.4. It sends as output the object it extracts
from the database file.

3.2.1.3.2.2 Algorithmic Model

Function read(path: String): void
json = null
read object from file at path into result
Question.QUESTIONS = json

End

3.2.1.3.2.3 Restrictions/Limitations

To operate correctly, the database file must exist, and the system
must be able to access it.

3.2.1.3.2.4 Local Data Structures

It uses QUESTIONS and the object structure defined in section 2.4.

3.2.1.3.2.5 Performance Issues

Because this sub-component reads data from a file on the hard
drive, the speed of this reading depends on the structure and health
of the drive itself as well as the drivers used to read it.

3.2.2 ChecklistHandler
3.2.2.1 Processing Narrative (PSPEC)

Instantiation starts without any arguments passed to the ChecklistHandler class
constructor. The constructor retrieves the QUESTIONS attribute in the Question

12

class using the getQuestions method and converts it into a collection of Question
objects, storing them in the questions field. Upon receiving requests from the
browser, ChecklistHandler objects can send questions, accessibility scores, and
tips to the views to be rendered using sendQuestions, sendScore, and sendTips
respectively. They can also update the answers of their questions field with the
answers received from the browser.

3.2.2.2 Interface Description

ChecklistHandler receives as an input the object in the QUESTIONS attribute in
the Question class and question answers from the browser. It sends as an output
questions, accessibility scores, and tips to the views to be rendered using
sendQuestions, sendScore, and sendTips respectively.

3.2.2.3 Description of Sub-Components
3.2.2.3.1 constructor()

3.2.1.3.1.1 Interface Description

It receives nothing as an input but updates its questions field as an
output with questions from its getQuestions() method.

3.2.2.3.1.2 Algorithmic Model

Function constructor()
this.questions = this.getQuestions();
End

3.2.2.3.1.3 Local Data Structures

It uses the QUESTIONS attribute in the Question class.
3.2.2.3.2 getQuestions(): Question[]

3.2.1.3.2.1 Interface Description

It receives as an input the object in the QUESTIONS attribute in the
Question class. It sends as an output Question objects to its
questions field.

3.2.2.3.2.2 Algorithmic Model

Function getQuestions(): Question[]

13

for each key in Question. QUESTIONS
questions[key] = Question(key)
End

3.2.2.3.2.3 Local Data Structures

It uses the QUESTIONS attribute in the Question class.
3.2.2.3.3 sendQuestions(): void
3.2.2.3.3.1 Interface Description

It receives nothing as an input, and it sends as an output question
ids, contents, and hints to the ChecklistView object.

3.2.2.3.3.2 Algorithmic Model

Function sendQuestions(): void
questions = {}
[For each question in ChecklistHandler.question, append id :
{content, hint} to questions]
ChecklistView.renderQuestions(questions)
End

3.2.2.3.3.3 Local Data Structures

It uses the questions attribute in the ChecklistHandler class.
3.2.2.3.4 getScore(): int
3.2.2.3.4.1 Interface Description

It receives nothing as an input, and it sends as an output an
accessibility score.

3.2.2.3.4.2 Algorithmic Model

Function getScore(): int
let yes, total = 0;
For each question in ChecklistHandler.questions
if (question.answer != null) total += question.weight
if (question.answer === true) yes += question.weight
return (total === 0) ? 100 : (100 * yes) / total
End

14

3.2.2.3.4.3 Local Data Structures

It uses the questions attribute in the ChecklistHandler
class.

3.2.2.3.5 sendScore(score: int, rating: int): void

3.2.2.3.5.1 Interface Description

It receives a score and rating as input, and it sends as an output an
accessibility score to the ResultView object.

3.2.2.3.5.2 Algorithmic Model

Function sendScore(score: int, rating: int): void
rating =
Calculate the rating from score and store it in rating
ResultView.renderScore(score, rating)

End

3.2.2.3.6 sendTips(ids: String[]): void
3.2.2.3.6.1 Interface Description

It receives question ids as input, and it sends as an output question
tips to the ResultView object.

3.2.2.3.6.2 Algorithmic Model

Function sendTips(ids: String[]): void
tips = [J;
for each question in ChecklistHandler.questions with id in ids
tips.push(question.tip);
ResultView.renderTips(tips)
End

3.2.2.3.6.3 Local Data Structures

It uses the questions attribute in the ChecklistHandler
class.

3.2.2.3.7 getNo(): Question(]
3.2.2.3.7.1 Interface Description

15

It receives nothing as input, and it sends as an output questions in
ChecklistHandler with “No” answers.

3.2.2.3.7.2 Algorithmic Model

Function getNo(): Question(]
no =]
for each question in questions with answer === false
no.push(question);
return no;
End

3.2.2.3.7.3 Local Data Structures

It uses the questions attribute in the ChecklistHandler
class.

3.2.2.3.8 getAnswers(): void
3.2.2.3.8.1 Interface Description

It receives nothing as input, and it sends as an output updated
answers to questions in ChecklistHandler.questions.

3.2.2.3.8.2 Algorithmic Model

Function getAnswers(): void
for each answer in the document
assign answer to corresponding question in questions
End

3.2.2.3.8.3 Local Data Structures

It uses the questions attribute in the ChecklistHandler
Class.

3.2.2.3.9 submit(href: String): void
3.2.2.3.9.1 Interface Description

It receives a href as an input, and it sends as an output a navigation
request to the browser.

3.2.2.3.9.2 Algorithmic Model

16

Function submit(href: String): void
getAnswers()
score = getScore()
no = getNo()
url = “${href}?score=${score}&tips="
Append each question id in no to url’s query string
Navigate browser to url
End

3.2.2.3.9.3 Local Data Structures

It uses the questions attribute in the ChecklistHandler
class.

3.2.2.3.10 clear(): void
3.2.2.3.10.1 Interface Description

It receives nothing as input and returns a render request to
ChecklistView to reset answers in the document to “N/A.”

3.2.2.3.10.2 Algorithmic Model

Function clear(): void
ChecklistView.clear();
End

3.2.3 ChecklistView
3.2.3.1 Processing Narrative (PSPEC)

ChecklistView is not supposed to be instantiated; all its operations are on the
class, rather than the object, level. It receives as inputs an object filled with

question ids, contents, and hints. It outputs question Ul elements to the browser.

3.2.3.2 Interface Description

It receives as inputs an object filled with question ids, contents, and hints from
the ChecklistHandler. It outputs question Ul elements to the browser.

3.2.3.3 Description of Sub-Components

3.2.3.3.1 renderQuestions(questions: {id:String {content:
String, hint: String}}): void

17

3.2.3.3.1.1 Interface Description

It receives as inputs an object filled with question ids, contents, and
hints from the ChecklistHandler. It outputs question Ul elements to
the browser.

3.2.3.3.1.2 Algorithmic Model

Function renderQuestions(questions: {id:String {content: String,
hint: String}}): void
html =
for each id in questions
html += html for questions][id] (See section 4)
Add html to the questions section of the Ul
End

3.2.3.3.1.3 Local Data Structures

It uses an object filled with question ids, contents, and hints from
the ChecklistHandler

3.2.3.3.2 clear(): void
3.2.3.3.2.1 Interface Description

It receives nothing as input, and it resets answer radio buttons on
the Ul to “N/A” as output.

3.2.3.3.2.2 Algorithmic Model

Function clear(): void
Select all the answer radio buttons on the document
Set the “N/A” radio buttons and unset all other buttons
End

3.2.4 ResultView
3.2.4.1 Processing Narrative (PSPEC)

ResultView is not supposed to be instantiated; all its operations are on the class
level, rather than the object. It receives as inputs an accessibility score and tips.
It sends as output accessibility score and tip Ul elements to the browser.

3.2.4.2 Interface Description

18

It receives as inputs an accessibility score and tips. It sends as output
accessibility score and tip Ul elements to the browser.

3.2.4.3 Description of Sub-Components
3.2.4.3.1 renderScore(score: int): void

3.2.4.3.1.1 Interface Description

It receives as inputs an accessibility score. It sends as output
accessibility score Ul elements to the browser.

3.2.4.3.1.2 Algorithmic Model

Function renderScore(score: int): void
Set the text accessibility score on the document to score.
Set the accessibility score bar on the document to score.
End

3.2.4.3.2 renderTips(tips: String[]): void
3.2.4.3.2.1 Interface Description

It receives as input question tips. It sends as output tip Ul elements
to the browser.

3.2.4.3.2.2 Algorithmic Model

Function renderTips(tips: String[]): void
html = “
For each tip in tips
html += html for tip
Add html to the tips section in the document.
End

19

3.3 Software Interface Description
3.3.1 External Machine Interfaces

This software system will only have a few optional external machine interfaces. In order
for a user to configure the software system with ease then serial interfaces can be
connected. If the user decides to access the system through a computer then such
serial interfaces can be keyboard and mouse devices. However, these serial interfaces
are not required to manipulate the system as there are alternatives, such as an on-
screen keyboard that generally are pre-installed on computer devices and touchpads

that are also usually built onto laptop devices.

3.3.2 External System Interfaces

This software system will mainly function on its own website. The website in question
would have to be accessed through an operating system, then to an internet browser.
Examples of available operating systems that can be used to access this system can
possibly be Microsoft Windows or Mac OS. Upon the user obtaining an operating
system, they can navigate to the software’s website by using an internet browser such
as Google Chrome, FireFox, or Microsoft Edge. Each of these example internet
browsers have search engines like Google or Yahoo, where the user can search for the
system’s website URL if they choose to do so. For this to be functional, the system must
be able to connect to a server and/or the internet. The user will be responsible for

connecting to a local internet server.

3.3.3 Human Interface

This software will primarily feature a human interface. This specific interface being a
user interface that allows the user to easily interact with the software system’s features.
The user interface will consist of three components: homepage, results page, and
manual page. The homepage will display the accessibility checklist the user can fill out.

The results page that will show the user how well their system fits in terms of

20

accessibility. Lastly, the manual page will provide information to the user on how to work
the accessibility checklist if they need help. More information on human interfaces are

available in section 4.0.

21

4.0 User Interface Design

The user interface in this project will consist of 3 screens. The home screen will
be where the user inputs their answers into the accessibility questionnaire. The results
screen will output the user’s accessibility score calculated from their answers and give
some tips to improve their application’s accessibility. The third screen is a help manual
screen where information will be provided to the user on how to use the questionnaire

and the website.

4.1 Description of the User Interface

Home Page

The home page starts with the application title at the top. The button for
accessing the help manual page is on the top right of the home page. Below the title is a
text that has instructions for using the hints option for each question. Below that are the

questions that the user will have to answer to generate an accessibility score.

The question section will contain yes/no questions for the user to answer based
on their website. The user can hover over the hint icon to get help with answering that
specific question. The user can also select the N/A option to skip answering that specific

question.

Below the questions section there are two buttons at the bottom of the page. The
clear button will clear all answers in the questionnaire and reset them to N/A. The
submit button will signal the application to calculate the user's answer and then send the

user to the output page.

Results Page

The output page also has the website application and the help manual button at
the top of the page. Below that is the primary output container for the web application.
The first output is the calculated accessibility score based on the user's answers on the

22

previous page. Below that is a bar that will give the user an idea of how good they
scored on accessibility. Below that is the tips section where tips will be presented to the
users based on their no answers in the questionnaire. There is also a home button

below the container to take the user back to the home page.

Manual Page

The manual page will contain the application title again, and it will also have a
container for application help. The container will have different sections that will instruct
the user in how to use the application, particularly the questionnaire, and the website.

Below the help container is a home button to return to the home page.

23

4.1.1 Screen Images

Ul Concept Images

Home Page Concept with Hints

Accessibility Checklist

Hover over ? for a hint

1. Do you have reasonably large font size? o
O Yes ONo O N/A

X. Sample Question @
O Yes ONo O N/A

X. Sample Question @
O Yes ONo O N/A

X. Sample Question @
O Yes ONo O N/A

Hint

Is this a sample text or
not? I am having trouble

X. Sample Question °< deciding...
O Yes ONo O N/A

X. Sample Question @
O Yes ONo O N/A

X. Sample Question @
O Yes ONo O N/A

X. Sample Question @
O Yes ONo O N/A

X. Sample Question @
O Yes ONo O N/A

Results Page Concept

Accessibility Checklist

YOUR ACCESIBILITY SCORE: 799%

|| EXCELLENT

ACCESSIBILITY TIPS:

1. You should use a bigger font size!!!

2. You shouldn't listen to these tips at all ._.

24

Actual Ul Images
Top of Home Page

Accessibility Checklist

Hover over for a hint

1. If there is non-text content, are there text alternatives that are available to the user? 9
O Yes O No ® NJA

2. If there is timed-based media, is there a text description above or below it explaining its contents? 9
O Yes O No ® N/A

3. If a non-text content invokes user input, is there an explanation provided in the the form of text to explain
what is needed from the user to continue? 9
O Yes O No ® N/A

4. For any time-based media, are captions/subtitles provided? 7
O Yes O No ® N/A

5. If there are ads or other time-based media, are you able to pause/unpause and change the audio settings? 9
O Yes O No ® N/A

6. Are the colors used a good contrast from one another so that everything can be easily read and seen? ¢
O Yes O No ® N/A

7. Are you able to resize the fonts up to 200 p i loss of f i i ? 7
O Yes O No @ N/A

8. Is your keyboard able to access everything on the page and navitage it well? 9
O Yes O No ® N/A

9. If the page you are on provides a time limit, are you able to perform at least one of the following actions to
extand tha tima limit? (1) Turn off the tima limit_ (2} Adinst tha tima limit ta voaur nrafarenca that i< at least 10

Bottom of Home Page

LT AT LAIILELL U LS UYL LIS LIS USTE LS LSS A L SEL VUL L SUSUS ST Y Ies

© Yes O No ® N/JA

20.In impl d using , elements have complete start and end tags? 9
O Yes O No ® NJA

21. In content impl ted using do no elements contain duplicate attributes? ¢
© Yes O No @ N/A

22. In content impl ted using , all IDs are unique, except where the specifications allow
these features? 9
© Yes O No & N/A

23. Does all media content have an alternative attribute? 9
O Yes O No ® N/A

25

Results Page

Accessibility Checklist

ACCESSIBILITY SCORE: 83%

ACCESSIBILITY RATING: EXCELLENT

I BAD I FAIR EXCELLENT

ACCESSIBILITY TIPS

1. Being able to resize helps users who are unable to see well. This helps them read all the information on the screen to their
preferences. You are able to implement this feature many different ways. One way to resize is to use the icon with three dots in
one column in the top right corner of your screen. If you click on it, there is a section where you can resize the font size. The
information needs to stay consistent between the different fonts.

2. A customer service section can be useful for users to acquire more information or clarification. The customer service
information contains an email and phone number. Most customer service information is provided at the bottom of the main page
and can be accessed from the navigation settings at the top of every page but it's up to you.

User Manual Page

Accessibility Checklist

User Manual

The Website Accessibility Checklist (WAC) was created to help its users determine how accessible a website is. On the home
page, there is a questionnaire, and each question on the questionnaire has three potential answers: yes, no, and n/a. By
answering these questions for a target website, you can evaluate its accessibility.

First, answer every question on the home page with yes, no, or n/a. Questions given the n/a answer are not used in the website
evaluation.

If you are confused or want more information about a question, you can hover over the question mark icon that is at the end of
each question. This will reveal a hint that elaborates the question.

When you are finished answering questions, click the submit button. You will be redirected to the results page where you will
receive the target’s: accessibility score as a percentage and their accessibility rank as text and on a scale.

For questions that were given a no answer, tips for improving the target’s accessibility will be provided. You can implement
these tips and complete the questionnaire to get a new score!

26

4.1.2 Objects and Actions

Home Page

Help Manual Button — Directs the user to the manual page when clicked.

Application Title — Displays the title of the application.

Questionnaire Container — Container that holds questions.

Question — Question in the questionnaire. Each question has the same format

consisting of the following elements:

O

o

o

Number — Question’s place in the questionnaire.

Content — Question that the user is asked.

Hint Icon — Icon next to the content that presents a textbox that explains
the question to the user when held on to or hovered over.

Answer Buttons — Radio buttons beneath the content that the user can
select to indicate their answer to the question. Only one button can be

selected per question.

e Control Buttons — Section beneath the questionnaire that contains buttons that

can be used to control the questionnaire. It contains the following buttons:

o

Submit Button — Sends answers to the questionnaire to be processed and
directs the user to the result page when clicked.

Clear Button — Resets all answers in the questionnaire to their default (i.e.
N/A) when clicked.

Results Page

Help Manual Button — Directs the user to the manual page when clicked.

Application Title — Displays the title of the application.

Result Container — Container that holds the results of the questionnaire, including

the accessibility score and tip elements.

Accessibility Score — Percentage calculated using the answers that the user gave

to the questionnaire. It is represented as text.

Accessibility Rating — Textual representation of the score bar.

Score Bar — Graphical representation of the accessibility score as a progress bar.

It consists of the following elements:

27

o Categories — Equal width sections on the score bar with the following
labels going left (low score) to right (high score): bad, fair, good, great,
excellent.

o Progress — Color bar beneath the categories whose width is identical to
the accessibility score. It indicates the category that score is in.

e Tips — Section within the result container that contains tips.

o Tips Title - Displays the title of the tips section within the tips section.

o Tip — Text which indicates how the user can improve their accessibility
score, or provide more “Yes” answers in the questionnaire.

e Home Button — Directs the user to the home page when clicked.

Manual Page
e Application Title — Displays the title of the application.
e Manual Container — Container that holds user manual information.
o Manual Title — Displays the title of the manual within the container.
o Manual Content — Content that is presented in the manual, including
instructions to assist the user in using the application.

e Home Button — Directs the user to the home page when clicked.

4.2 Interface Design Rules

The user interface has a couple universal design conventions. The first being the
font. The Ul uses Verdana font for every piece of text. This was chosen because it looks
nice and it has good readability. Another almost universal design standard is that text is
bolded. The title, questions, buttons, score, and sections are all bold font weight. The

only things that don’t use bold text are the question answers and accessibility tips.
When it comes to color, blue was chosen as the whole site background. The

same blue is also used for the score bar, and a darker blue was chosen for the question

hints. All of the containers and buttons use white as their background color. All text

28

inside the containers and buttons is a regular black, and the borders to containers and
buttons are also black. The title was chosen to be yellow just to add a little bit of

brightness and variety in color to the website.

4.3 Components Available

The application currently has 4 main Ul components available for implementation
into the final package. The first is the website design. Design has been mostly
completed for the Ul, and the basic layout/design of the website has been implemented
into a rudimentary and working prototype. The other 3 Ul components available are the

skeletons for each webpage.

The home page has the containers for the questionnaire setup and the questions
designed. The questionnaire still needs to be implemented with the question database
to load the questions into the webpage but the design for that is complete. The hints
also need to be generated and their functionality implemented. The results page is also
complete in design except that it needs to be implemented with the database as well to
display accessibility tips. The score processing system also needs to be implemented
between these two pages to give the user an accessibility score. The last thing that has
been completed is the manual page. The container is all set except help documentation
may need to be refined for completeness and altered based on changes to be ready for

full release.

4.4 UIDS Description

The prototype user interface presented in this section of the document was
developed using visual studio code to edit html/css and the live server extension to run
javascript code on it. The Ul contains 3 HTML files: 1 for each webpage on the app. It
also contains 4 css files: 1 for global use and 1 css file for every page. There are 3
javascript files: 1 for global use, 1 for the home page, and 1 for the results page. Finally

there is a JSON file for the questions and related content that will be loaded into the Ul.

29

5.0 Restrictions, Limitations, and Constraints

The development team was restricted on time to complete this design document.
The development team had less than a month to determine what tiny tool that they
would focus on and the basic functionalities and features needed to help the user
determine their application’s accessibility. We had to make sure to delegate the
workload evenly and complete each section to the best of our ability to create a great
tiny tool.

Another constraint is the length of the questionnaire. It should be able to be
completed within a ten to fifteen minute interval to maximize the efficiency and
effectiveness of the website. If the questionnaire is too long, it could overwhelm the user
and could cause the data to be inconclusive. The questions need to be specific and
intentional to provide the best analysis of the application and eliminate redundancies.
The length of the questionnaire will focus on the qualitative, yes or no, questions.

The website must be able to scale with the user’s screen and be able to be
viewed and used effectively on mobile devices as well as traditional browsers. All
functionality and features need to be available on all screens. The questions must be
easy to read, and more information/clarification to each question must be provided to
the user in the form of hints, when needed. The navigation of the questions must be
clear and separated into different sections based on the type of question. All the
questions need to be on the home page and all the answers and tips need to be on the
result page.

The site must conduct accurate calculations quickly, and the results page must
load within 5 seconds of the user selecting the ‘submit’ button. The calculations need to
be correct and provide a good assessment of the user’s application. The weight
distribution for the yes or no questions need to also represent the importance to the
overall application. If the weight distribution is incorrect, the application in question could
be evaluated incorrectly and provide the user with faulty information. These constraints

are also outlined in the Performance Bounds (Section 6.3).

30

6.0 Testing Issues

6.1 Classes of Tests

For more detailed information regarding testing strategy, procedure, and
classification, see the test plan for this system.

Testing will be conducted in two ways. Black box testing will have defined inputs
and outputs, which will be defined below in Section 6.2. It will be divided into three
sections: functional testing, non-functional testing (for improvements on efficiency, user
experience, and other features), and regression testing. Functional and non-functional
testing will be conducted after each step of coding, and will be repeated as necessary
with regression testing as changes are made. For the questionnaire, yes and no
questions will be tested to ensure that the correct points are tabulated.

White box testing will test the inner functionality of the code, specifically the
calculations that result in the final accessibility score and the weighted table. This is
something that we cannot test exclusively with black box testing because black-box
testing only provides testers with access to inputs and outputs. This will be done by
setting test flags at key points within the code to check each step of the calculation and
checking that all the weights are working correctly. Similarly, regression testing will be
performed here as well to ensure that subsequent changes are not impacting previous

code.

6.2 Expected Software Response

For more detailed test cases, see the test plan for this system.

Black Box
ID# Test Expected Results
B1 | Webpage loads in browser Webpage loads within five seconds.
B2 | Questions added to the Questions are added to the database and updated in
database are displayed in the Ul | the Ul.
B3 | ‘Yes’ responses are totaled The final score reflects the responses provided by the

31

user.

B4 | Tips to ‘no’ responses displayed | Relevant tips are displayed below the final result.

B5 | “?’ provides a hint when clicked | When the user selects the button next to the question, a
corresponding hit about the purpose of the question
shows.

B6 | No score or tip is provided when | No changes to the output for assessments that do not

the user selects ‘NA’ apply to the application being tested by the user.

B7 | All user responses are displayed | View all questions and answers

on the results page.

B8 [Final result will be displayed Correct total of all answers is displayed

B9 | Progress bar with quality Correct results will be applied based on a conversion

description is displayed from raw score.

B10 | View user manual When the user clicks the button, they are able to
navigate to the user manual page

B11 | Return Home Anywhere in the webpage, the user is able to click the
home button and they return to the original questions
screen.

B12 | Navigate to results page Once the user selects to submit their responses they
are automatically sent to the results page.

White Box
ID# Test Execution Expected Results
W1 | Question Score After each question, print out | If ‘yes’, then the score is added to
Assignment the new score to verify the the total application score.
correct sum.
W2 | Time Metric Score As the user traverses the The appropriate amount of time is

Total

website and adds time to their
total, the new total is printed.

added for each action as the user
navigates the website.

6.3 Performance Bounds

1. Loading Time — Browser must load the page within 5 seconds.

2. Result Delay — Time between submitting the questionnaire and displaying the

32

results must be less than 5 seconds.

3. Question Number — Expected test metrics should be met as long as the number
of questions in the questionnaire is less than or equal to 25.

4. Average Time — Average time spent answering questions on the questionnaire

must be less than 15 minutes.

6.4 Identification of Critical Components

Critical components of this program will all stem from the host server. Within the
actual program itself, collecting and displaying the questions from the database with
their respective hints. These questions are the center of the program and not only must
they function, but they must be formulated to highlight key components of the
application they are assessing. For maintainability, the program should be able to

update the current questions and add new ones when necessary.

33

7.0 Appendices

7.1 Requirements Traceability Matrix

Requirements Traceability Matrix

Project Name: Website Accessibility Checklist (WAC)

Business Functional Requirements Document (FSD) Testing Document
Requirements
Document (BRD)
BR ID# | Business FR ID# | Functional Requirement Priority | Test Case
Requirement ID#
BR 1 Navigation FR 1 Webpage loads in browser High B1

FR 2 User can read hints to supplement the question | Medium | B5

information
FR 3 User can read user manual Medium | B10
FR 4 User can return home from anywhere on the Medium | B11
website
FR_5 Software automatically navigates to the results | High B12

page when users submit

BR 2 Questions FR_8 Questions manually added to the database are | High B2
displayed in the Ul
FR 9 Yes responses are totaled High B3
W1
FR_10 | No responses are saved and tips for each are High B4
displayed on the results page WA1
FR_11 | User can input qualitative data into the chart High W2
BR_3 Results FR_13 | No score or tip when user selects NA High B6
FR_14 | All user responses are displayed High B7
B12
W1
w2

34

FR_15 | Final result is displayed correctly High B8
W1
w2

FR_16 | Progress bar with quality description is Low B9
displayed

7.2 Packaging and Installation Issues

For the packaging of this software, the development team decided to use a zip
file to contain the software. A zip file is easy to use and can hold all the software that
creates this tiny tool. The zip file can be sent through email, canvas or on a flash drive,
making this packaging portable. It shouldn’t hinder the usability of the software and

should help the user quickly access the software.

The installation should be straightforward using a zip file. The user just needs to
unzip the file and have a web browser to access this questionnaire. To unzip the file, the
user would either have to open it from their email or canvas or insert a flash drive into
their computer. The questionnaire should have no problems, while running after

installation.

7.3 Design Metrics to be Used

To evaluate your design we will use a few different design analysis metrics. This
is actually very similar to the website we are designing, and we will be using similar
strategies ourselves.

1. System Usability Scale (SUS) - a ten question survey to be given to users at the
end which will gauge the initial usability.

2. Time on Task - this will measure the average amount of time that users spend on
the website.

3. Task Accomplishment Rate - industry standards is around a seventy-five percent
task completion rate, but for a site as simple as ours the rate should be as close

to 100% as possible.

35

4. Error Rate - this counts the number of errors that the user makes, which will help

us mitigate them and evaluate the quality of the end product.

7.4 Supplementary Information

“10 Most Common Web Accessibility Issues to Solve For.” BrowserStack, 2 Sept. 2022,
https://www.browserstack.com/guide/common-web-accessibility-issues.

Hamilton, Thomas. “White Box Testing — What Is, Techniques” Guru99, 15 Sept. 2022,
https://www.guru99.com/white-box-testing.html.

“Introducing JSON.” JSON, https://www.json.org/json-en.html.

Kumar, Nishant. “How the Model View Controller Architecture Works — MVC Explained.”
FreeCodeCamp.org, FreeCodeCamp.org, 30 July 2021,
https://www.freecodecamp.org/news/model-view-architecture/.

Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines Apply to Mobile,
https://www.w3.0org/TR/mobile-accessibility-mapping/.

Mobile Web Application Best Practices, https://www.w3.org/TR/mwabp/.

“‘MVC - MDN Web Docs Glossary: Definitions of Web-Related Terms: MDN.” MDN Web
Docs Glossary: Definitions of Web-Related Terms | MDN,
https://developer.mozilla.org/en-US/docs/Glossary/MVC.

Pressman, Roger S. Software Engineering: A Practitioner's Approach 9th ed.
MCGRAW-HILL COMPANIES (OH), 2005.

“‘Understanding WCAG 2.1.” W3C, https://lwww.w3.org/WAI/WCAG21/Understanding/.

“‘What Is Black Box Testing: Techniques” Learning Center, 24 Sept. 2020,
https://www.imperva.com/learn/application-security/black-box-
testing/#:~:text=Black%20box%?20testing%20can%20test,|09%20in%20using%20wrong
%Z20credentials.

36

	1.0 Introduction
	1.1 Goals and Objectives
	1.2 Statement of Scope
	1.3 Software Context
	1.4 Major Constraints

	2.0 Data Design
	2.1 Internal Software Data Structure
	2.2 Global Data Structure
	2.3 Temporary Data Structure
	2.4 Database Description

	3.0 Architectural and Component-Level Design
	3.1 Program Structure
	3.1.1 Architecture Diagram
	3.1.2 Alternatives

	3.2 Description of Components
	3.2.1 Question
	3.2.2 ChecklistHandler
	3.2.3 ChecklistView
	3.2.4 ResultView

	3.3 Software Interface Description
	3.3.1 External Machine Interfaces
	3.3.2 External System Interfaces
	3.3.3 Human Interface

	4.0 User Interface Design
	4.1 Description of the User Interface
	4.1.1 Screen Images
	4.1.2 Objects and Actions

	4.2 Interface Design Rules
	4.3 Components Available
	4.4 UIDS Description

	5.0 Restrictions, Limitations, and Constraints
	6.0 Testing Issues
	6.1 Classes of Tests
	6.2 Expected Software Response
	6.3 Performance Bounds
	6.4 Identification of Critical Components

	7.0 Appendices
	7.1 Requirements Traceability Matrix
	7.2 Packaging and Installation Issues
	7.3 Design Metrics to be Used
	7.4 Supplementary Information

