
Website Accessibility Checklist  

UI Design Document 

Team 2: Jacob Mathison, Emily Buzle, Taylor Williams, Jadyn Smith, Javid Ditty 

  



1 

Table of Contents 
1.0 Introduction 3 

1.1 Goals and Objectives 3 

1.2 Statement of Scope 3 

1.3 Software Context 4 

1.4 Major Constraints 4 

2.0 Data Design 6 

2.1 Internal Software Data Structure 6 

2.2 Global Data Structure 6 

2.3 Temporary Data Structure 8 

2.4 Database Description 8 

3.0 Architectural and Component-Level Design 9 

3.1 Program Structure 9 

3.1.1 Architecture Diagram 9 

3.1.2 Alternatives 9 

3.2 Description of Components 11 

3.2.1 Question 11 

3.2.2 ChecklistHandler 12 

3.2.3 ChecklistView 17 

3.2.4 ResultView 18 

3.3 Software Interface Description 20 

3.3.1 External Machine Interfaces 20 

3.3.2 External System Interfaces 20 

3.3.3 Human Interface 20 

4.0 User Interface Design 22 

4.1 Description of the User Interface 22 

4.1.1 Screen Images 24 

4.1.2 Objects and Actions 27 

4.2 Interface Design Rules 28 

4.3 Components Available 29 

4.4 UIDS Description 29 

5.0 Restrictions, Limitations, and Constraints 30 

6.0 Testing Issues 31 

6.1 Classes of Tests 31 

6.2 Expected Software Response 31 

6.3 Performance Bounds 32 

6.4 Identification of Critical Components 33 



2 

7.0 Appendices 34 

7.1 Requirements Traceability Matrix 34 

7.2 Packaging and Installation Issues 35 

7.3 Design Metrics to be Used 35 

7.4 Supplementary Information 36 

  



3 

1.0 Introduction 

1.1 Goals and Objectives 

The goal of this software is to facilitate the assessment process of a website by 

using an accessibility checklist in the form of a questionnaire. It will allow the users to 

evaluate the quality and effectiveness of an app. This will be achieved through a 

website that allows users to answer questions regarding the organization and 

presentation of content, the functionality of website components, efficiency of use, 

ability to find relevant information, as well as overall aesthetics. These questions will be 

evaluated and interpreted to provide the user with a score that shows the quality of the 

accessibility of the website. 

1.2 Statement of Scope 

Users 

 Users of this software will be web application testers and end users (referenced 

as users in this document) that will evaluate website accessibilities with a questionnaire. 

Inputs 

 Users will provide “yes,” “no,” and “n/a” answers to each question in the 

accessibility checklist. 

 

Processing Functionality 

 User responses will be stored temporarily in order to compute the necessary 

calculations to determine the score. But results and responses will not be saved long-

term. This means that the only data storage will be for the questions. This will be stored 

in a JSON file. 

Outputs 

There will be three pages for this application. The first will be the user input 

screen where the questions will be presented, described, and answered. Also on this 

screen will be the title and a short description of the software scope and functionality. 



4 

The second screen will be the results screen which will describe the methods and 

equations used to find the totals for each section of the questionnaire. The final total will 

be presented as well as final insights based on the score. There will also be a page for 

the user manual as well, which will answer any questions the user may have and 

display the calculations used to find the resulting score. 

1.3 Software Context 

This questionnaire will allow for the easy quantification of the quality of the 

accessibility of a web application. For users and developers testing and providing 

feedback on applications that they are using or making, this provides a consistent 

source of feedback that can be replicated. This makes the testing and reviewing 

process more objective and allows people to return to our software and take the 

questionnaire again to gauge improvement on their development. We will use the Web 

Content Accessibility Guidelines (WCAG), specifically where it applied to web 

applications. This is a set of documents formulated by the Accessibility Guidelines 

Working Group which covers recommendations for making web content more 

accessible, and many of the points covered apply to apps by extension. Another source 

that we will use as a guide to formulate our questions in order to evaluate the software 

of other mobile applications is the WC3 Mobile Application Best practices. It is different 

from the mobile browsing best practices because it considers the development of web 

applications for mobile devices, which is what our accessibility checklist will be 

evaluating. 

1.4 Major Constraints  

One constraint is related to the number and types of questions that the user is 

required to answer to determine the quality of their application’s accessibility. The 

development team will determine the types of questions that need to be answered to 

determine the state of the user’s application.  

 



5 

The questionnaire will be also limited to yes, no and n/a questions. Each 

question will need to provide hints that will elaborate the question for the user to help 

them determine if their application answers the question or not. Each hint will only 

provide guidance on the current question. For each question, the user only has to click 

the yes or no option to answer the question. 

 

A weighted table will be designed to calculate how important each question is to 

create an accessible application. It will be constrained based on what the developers 

determine is important to create an accessible application. The rating that the user will 

be given on a scale of bad, fair, good, great or excellent with the overall score.  

 

 

  



6 

2.0 Data Design  

2.1 Internal Software Data Structure 

Question – Model that represents a question that can be put into the checklist. 

Attribute/Method Definition 

- QUESTIONS: Object 
Questions read from the database file using read(path). For 
information about its structure, see Section 2.4. 

- id: int Unique number that is used to identify a question. 

- content: String That which is being asked by a question. 

- answer: boolean That which is given in response to a question. 

- weight: int Impact that the question has on the accessibility score. 

- hint: String Elaboration on the content of a question. 

- tip: String Guide for following guidelines that a question implies. 

+ constructor(id: int) 
Constructs a question object and initializes it with the 
question that has the id in QUESTIONS. 

- read(path: String): 
void 

Reads object at database file located at path and stores the 
result in QUESTIONS. For information about its structure, 
see Section 2.4. 

 

2.2 Global Data Structure 

ChecklistHandler – Controller that handles the checklist and its interactions. 

Attribute/Method Definition 

- questions: Question[] Questions that are on the checklist. 

+ constructor() 
Constructs a ChecklistHandler object, initializing its 
question field using its getQuestions() method. 

+ getQuestions(): Question[] 
Converts the QUESTIONS attribute in the Question 
class into Question objects. 



7 

+ sendQuestions(): void Sends questions to the ChecklistView class to render. 

+ getScore():int 
Calculates the accessibility score from each 
question.answer in ChecklistHandler.questions and 
returns it. 

+ sendScore(score: int): void Sends score to the ResultView class to render. 

+ sendTips(ids: String[]): void 
Retrieves tips from the questions with an id in ids and 
sends them to the ResultView class to render. 

+ getNo(): Question[] 
Gets each question in ChecklistHandler.questions 
with a “No” answer and returns them. 

+ getAnswers(): void 
Updates each question.answer in 
ChecklistHandler.questions with the corresponding 
answer in questionnaire. 

+ submit(href: String): void 

Gets the accessibility score and the ids of all the 
questions with “No” answers; attaches them as query 
strings to href; and directs the user to the resulting 
url. 

+ clear(): void 
Send a request to ChecklistView to clear the 
questionnaire. 

 

ChecklistView – View that represents the checklist. 

Attribute/Method Definition 

+ renderQuestions(questions: 
{ id:String : {content: String, 
hint: String } }): void 

Renders the UI with all the questions in questions. 

+ clear(): void 
Resets all the answer radio button groups in the 
questionnaire to the “N/A” answer. 

 

ResultView – View that represents the checklist results. 

Attribute/Method Definition 

+ renderScore(score: int, rating: int): 
void 

Renders the accessibility score, the 
accessibility rating, and the score bar 
progress with score and rating. 



8 

+ renderTips(tips: String[]): void 
Renders the tips section with all the tips in 
tips. 

2.3 Temporary Data Structure 

No temporary data structures are used in this project. 

 

2.4 Database Description 

Because only question ids, contents, weights, hints, 

and tips require permanent storage and JSON files 

have a high compatibility with JavaScript, this 

project will use a JSON file as a database. The file 

will have the format shown in the image titled “2.4 - 

Database Format” with the id as the primary key. 

 

  

  



9 

3.0 Architectural and Component-Level Design  

3.1 Program Structure 

 For this project, we have selected the MVC (Model View Controller) Architecture. 

The Model component contains content and logic concerning the manipulation of data, 

and it has sole access to the database. The View component handles the visual aspect 

of the website, or the UI, and it portrays the data model to the user. The Controller 

component connects the Model and View, handling the real-time data requests from the 

browser. For us, this means that it will handle answer collection, and the calculation of 

the accessibility score, values that will never be stored within the database. 

 

3.1.1 Architecture Diagram 

 

3.1.2 Alternatives 

We selected the MVC architecture because:  



10 

● It is a popular web development architecture. 

● It separates the project into three distinct components that will improve unit 

testing and maintenance tasks. 

● It reduces the coupling between components, improving the reusability of each 

component. 

We considered alternative architectures such as: 

● Data-Centered – Because our project relies on a database that contains 

questions, a data store is central to our project. However, data-centered 

architectures are designed for projects that frequently access and update data 

within the store. Our project does not modify the store directly, and it only 

accesses it once at startup, contradicting the purpose of this architecture. 

● Object-Oriented – Because our project’s functions can be captured by distinct 

and well-defined objects and their communication, this architecture could have 

been a good choice for our project. However, it does not define object roles as 

distinctly as the MVC architecture, making it more difficult to understand and 

maintain. 

  



11 

3.2 Description of Components 

3.2.1 Question 

3.2.1.1 Processing Narrative (PSPEC) 

Before instantiation, the Question class initializes its QUESTIONS field with the 

object contained in the database file. QUESTIONS is initialized using the read 

method. Instantiation starts once a question id is passed to the Question class 

constructor. The constructor retrieves the data from QUESTIONS that have a 

matching id, creates a question object, and initializes the id, content, weight, hint, 

and tip fields of the question object with the data. The answer field is initialized 

with a null value. 

3.2.1.2 Interface Description 

Question receives as input an id from a ChecklistHandler object and an id, 

content, weight, hint, and tip from the database file. Question sends as output its 

id, content, weight, hint, answer, and tip fields to the ChecklistHandler. 

3.2.1.3 Description of Sub-Components 

3.2.1.3.1 constructor(id: int) 

3.2.1.3.1.1 Interface Description 

It receives as input an id from a ChecklistHandler object and 

content, weight, hint, and tip from Question.QUESTIONS. It sends 

as output a Question object. 

3.2.1.3.1.2 Algorithmic Model 

Function constructor(id: int) 

         this.id = id 

         this.content = Question.QUESTION[id].content 

this.weight = Question.QUESTION[id].weight 

this.hint = Question.QUESTIONS[id].hint 

this.tip = Question.QUESTIONS[id].tip 

this.answer = null 

End 

3.2.1.3.1.3 Restrictions/Limitations 



12 

To operate correctly, the database file must exist, and the system 

must be able to access it. It is used to define the QUESTIONS field. 

3.2.1.3.1.4 Local Data Structures 

It uses the QUESTIONS, id, content, weight, hint, tip, and answer 

fields. 

3.2.1.3.2 read(path: String): Object 

3.2.1.3.2.1 Interface Description 

It receives as input a path to the database file with the structure 

described in section 2.4. It sends as output the object it extracts 

from the database file. 

3.2.1.3.2.2 Algorithmic Model 

Function read(path: String): void 

 json = null 

         read object from file at path into result 

 Question.QUESTIONS = json 

End 

3.2.1.3.2.3 Restrictions/Limitations 

To operate correctly, the database file must exist, and the system 

must be able to access it. 

3.2.1.3.2.4 Local Data Structures 

It uses QUESTIONS and the object structure defined in section 2.4. 

3.2.1.3.2.5 Performance Issues 

Because this sub-component reads data from a file on the hard 

drive, the speed of this reading depends on the structure and health 

of the drive itself as well as the drivers used to read it.  

3.2.2 ChecklistHandler 

3.2.2.1 Processing Narrative (PSPEC) 

Instantiation starts without any arguments passed to the ChecklistHandler class 

constructor. The constructor retrieves the QUESTIONS attribute in the Question 



13 

class using the getQuestions method and converts it into a collection of Question 

objects, storing them in the questions field. Upon receiving requests from the 

browser, ChecklistHandler objects can send questions, accessibility scores, and 

tips to the views to be rendered using sendQuestions, sendScore, and sendTips 

respectively. They can also update the answers of their questions field with the 

answers received from the browser. 

 

3.2.2.2 Interface Description 

ChecklistHandler receives as an input the object in the QUESTIONS attribute in 

the Question class and question answers from the browser. It sends as an output 

questions, accessibility scores, and tips to the views to be rendered using 

sendQuestions, sendScore, and sendTips respectively. 

 

3.2.2.3 Description of Sub-Components 

3.2.2.3.1 constructor() 

3.2.1.3.1.1 Interface Description 

It receives nothing as an input but updates its questions field as an 

output with questions from its getQuestions() method.  

3.2.2.3.1.2 Algorithmic Model 

Function constructor() 

 this.questions = this.getQuestions(); 

End 

3.2.2.3.1.3 Local Data Structures 

It uses the QUESTIONS attribute in the Question class. 

3.2.2.3.2 getQuestions(): Question[] 

3.2.1.3.2.1 Interface Description 

It receives as an input the object in the QUESTIONS attribute in the 

Question class. It sends as an output Question objects to its 

questions field. 

3.2.2.3.2.2 Algorithmic Model 

Function getQuestions(): Question[] 



14 

 for each key in Question.QUESTIONS 

  questions[key] = Question(key) 

End 

3.2.2.3.2.3 Local Data Structures 

It uses the QUESTIONS attribute in the Question class. 

3.2.2.3.3 sendQuestions(): void 

3.2.2.3.3.1 Interface Description 

It receives nothing as an input, and it sends as an output question 

ids, contents, and hints to the ChecklistView object. 

3.2.2.3.3.2 Algorithmic Model 

Function sendQuestions(): void 

 questions = {} 

 [For each question in ChecklistHandler.question, append id : 

{content, hint} to questions] 

 ChecklistView.renderQuestions(questions) 

End 

3.2.2.3.3.3 Local Data Structures 

It uses the questions attribute in the ChecklistHandler class. 

3.2.2.3.4 getScore(): int 

3.2.2.3.4.1 Interface Description 

It receives nothing as an input, and it sends as an output an 

accessibility score. 

3.2.2.3.4.2 Algorithmic Model 

Function getScore(): int 

 let yes, total = 0; 

 For each question in ChecklistHandler.questions 

  if (question.answer != null) total += question.weight 

  if (question.answer === true) yes += question.weight 

 return (total === 0) ? 100 : (100 * yes) / total 

End 



15 

3.2.2.3.4.3 Local Data Structures 

It uses the questions attribute in the ChecklistHandler  

class. 

3.2.2.3.5 sendScore(score: int, rating: int): void 

3.2.2.3.5.1 Interface Description 

It receives a score and rating as input, and it sends as an output an 

accessibility score to the ResultView object. 

3.2.2.3.5.2 Algorithmic Model 

Function sendScore(score: int, rating: int): void 

 rating = “” 

 Calculate the rating from score and store it in rating 

 ResultView.renderScore(score, rating) 

End 

3.2.2.3.6 sendTips(ids: String[]): void 

3.2.2.3.6.1 Interface Description 

It receives question ids as input, and it sends as an output question 

tips to the ResultView object. 

3.2.2.3.6.2 Algorithmic Model 

Function sendTips(ids: String[]): void 

 tips = []; 

 for each question in ChecklistHandler.questions with id in ids 

  tips.push(question.tip); 

 ResultView.renderTips(tips) 

End 

3.2.2.3.6.3 Local Data Structures 

It uses the questions attribute in the ChecklistHandler  

class. 

3.2.2.3.7 getNo(): Question[] 

3.2.2.3.7.1 Interface Description 



16 

It receives nothing as input, and it sends as an output questions in 

ChecklistHandler with “No” answers. 

3.2.2.3.7.2 Algorithmic Model 

Function getNo(): Question[] 

no = [] 

for each question in questions with answer === false 

no.push(question); 

return no; 

End 

3.2.2.3.7.3 Local Data Structures 

It uses the questions attribute in the ChecklistHandler  

class. 

3.2.2.3.8 getAnswers(): void 

3.2.2.3.8.1 Interface Description 

It receives nothing as input, and it sends as an output updated 

answers to questions in ChecklistHandler.questions. 

3.2.2.3.8.2 Algorithmic Model 

Function getAnswers(): void 

for each answer in the document 

 assign answer to corresponding question in questions 

End 

3.2.2.3.8.3 Local Data Structures 

It uses the questions attribute in the ChecklistHandler  

Class. 

3.2.2.3.9 submit(href: String): void 

3.2.2.3.9.1 Interface Description 

It receives a href as an input, and it sends as an output a navigation 

request to the browser.  

3.2.2.3.9.2 Algorithmic Model 



17 

Function submit(href: String): void 

    getAnswers() 

    score = getScore() 

    no = getNo() 

    url = `${href}?score=${score}&tips=` 

    Append each question id in no to url’s query string 

    Navigate browser to url 

End 

3.2.2.3.9.3 Local Data Structures 

It uses the questions attribute in the ChecklistHandler  

class. 

3.2.2.3.10 clear(): void 

3.2.2.3.10.1 Interface Description 

It receives nothing as input and returns a render request to 

ChecklistView to reset answers in the document to “N/A.” 

3.2.2.3.10.2 Algorithmic Model 

Function clear(): void 

    ChecklistView.clear(); 

End 

3.2.3 ChecklistView 

3.2.3.1 Processing Narrative (PSPEC) 

ChecklistView is not supposed to be instantiated; all its operations are on the 

class, rather than the object, level. It receives as inputs an object filled with 

question ids, contents, and hints. It outputs question UI elements to the browser. 

 

3.2.3.2 Interface Description 

It receives as inputs an object filled with question ids, contents, and hints from 

the ChecklistHandler. It outputs question UI elements to the browser. 

 

3.2.3.3 Description of Sub-Components 

3.2.3.3.1 renderQuestions(questions: {id:String {content: 

String, hint: String}}): void 



18 

3.2.3.3.1.1 Interface Description 

It receives as inputs an object filled with question ids, contents, and 

hints from the ChecklistHandler. It outputs question UI elements to 

the browser. 

3.2.3.3.1.2 Algorithmic Model 

Function renderQuestions(questions: {id:String {content: String, 

hint: String}}): void 

 html = “” 

 for each id in questions 

  html += html for questions[id] (See section 4) 

 Add html to the questions section of the UI 

End 

3.2.3.3.1.3 Local Data Structures 

It uses an object filled with question ids, contents, and hints from 

the ChecklistHandler 

3.2.3.3.2 clear(): void 

3.2.3.3.2.1 Interface Description 

It receives nothing as input, and it resets answer radio buttons on 

the UI to “N/A” as output. 

3.2.3.3.2.2 Algorithmic Model 

Function clear(): void 

 Select all the answer radio buttons on the document 

 Set the “N/A” radio buttons and unset all other buttons 

End 

3.2.4 ResultView 

3.2.4.1 Processing Narrative (PSPEC) 

ResultView is not supposed to be instantiated; all its operations are on the class 

level, rather than the object. It receives as inputs an accessibility score and tips. 

It sends as output accessibility score and tip UI elements to the browser. 

 

3.2.4.2 Interface Description 



19 

It receives as inputs an accessibility score and tips. It sends as output 

accessibility score and tip UI elements to the browser. 

 

3.2.4.3 Description of Sub-Components 

3.2.4.3.1 renderScore(score: int): void 

3.2.4.3.1.1 Interface Description 

It receives as inputs an accessibility score. It sends as output 

accessibility score UI elements to the browser. 

3.2.4.3.1.2 Algorithmic Model 

Function renderScore(score: int): void 

Set the text accessibility score on the document to score. 

Set the accessibility score bar on the document to score. 

End 

3.2.4.3.2 renderTips(tips: String[]): void 

3.2.4.3.2.1 Interface Description 

It receives as input question tips. It sends as output tip UI elements 

to the browser. 

3.2.4.3.2.2 Algorithmic Model 

Function renderTips(tips: String[]): void 

html = “” 

For each tip in tips 

 html += html for tip 

Add html to the tips section in the document. 

End 

  



20 

3.3 Software Interface Description 

3.3.1 External Machine Interfaces 

This software system will only have a few optional external machine interfaces. In order 

for a user to configure the software system with ease then serial interfaces can be 

connected. If the user decides to access the system through a computer then such 

serial interfaces can be keyboard and mouse devices. However, these serial interfaces 

are not required to manipulate the system as there are alternatives, such as an on-

screen keyboard that generally are pre-installed on computer devices and touchpads 

that are also usually built onto laptop devices. 

 

3.3.2 External System Interfaces 

This software system will mainly function on its own website. The website in question 

would have to be accessed through an operating system, then to an internet browser. 

Examples of available operating systems that can be used to access this system can 

possibly be Microsoft Windows or Mac OS. Upon the user obtaining an operating 

system, they can navigate to the software’s website by using an internet browser such 

as Google Chrome, FireFox, or Microsoft Edge. Each of these example internet 

browsers have search engines like Google or Yahoo, where the user can search for the 

system’s website URL if they choose to do so. For this to be functional, the system must 

be able to connect to a server and/or the internet. The user will be responsible for 

connecting to a local internet server.  

 

3.3.3 Human Interface 

This software will primarily feature a human interface. This specific interface being a 

user interface that allows the user to easily interact with the software system’s features. 

The user interface will consist of three components: homepage, results page, and 

manual page. The homepage will display the accessibility checklist the user can fill out. 

The results page that will show the user how well their system fits in terms of 



21 

accessibility. Lastly, the manual page will provide information to the user on how to work 

the accessibility checklist if they need help. More information on human interfaces are 

available in section 4.0. 

  



22 

4.0 User Interface Design 

The user interface in this project will consist of 3 screens. The home screen will 

be where the user inputs their answers into the accessibility questionnaire. The results 

screen will output the user’s accessibility score calculated from their answers and give 

some tips to improve their application’s accessibility. The third screen is a help manual 

screen where information will be provided to the user on how to use the questionnaire 

and the website. 

4.1 Description of the User Interface 

Home Page 

The home page starts with the application title at the top. The button for 

accessing the help manual page is on the top right of the home page. Below the title is a 

text that has instructions for using the hints option for each question. Below that are the 

questions that the user will have to answer to generate an accessibility score. 

 

The question section will contain yes/no questions for the user to answer based 

on their website. The user can hover over the hint icon to get help with answering that 

specific question. The user can also select the N/A option to skip answering that specific 

question.  

 

Below the questions section there are two buttons at the bottom of the page. The 

clear button will clear all answers in the questionnaire and reset them to N/A. The 

submit button will signal the application to calculate the user's answer and then send the 

user to the output page.  

 

Results Page 

The output page also has the website application and the help manual button at 

the top of the page. Below that is the primary output container for the web application. 

The first output is the calculated accessibility score based on the user's answers on the 



23 

previous page. Below that is a bar that will give the user an idea of how good they 

scored on accessibility. Below that is the tips section where tips will be presented to the 

users based on their no answers in the questionnaire. There is also a home button 

below the container to take the user back to the home page. 

 

Manual Page 

The manual page will contain the application title again, and it will also have a 

container for application help. The container will have different sections that will instruct 

the user in how to use the application, particularly the questionnaire, and the website. 

Below the help container is a home button to return to the home page. 

  



24 

4.1.1 Screen Images 

UI Concept Images 

Home Page Concept with Hints 

 

 

Results Page Concept 

 

 



25 

Actual UI Images 

Top of Home Page 

 

Bottom of Home Page 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

 

Results Page 

 

User Manual Page 

 

  



27 

4.1.2 Objects and Actions 

Home Page 

● Help Manual Button – Directs the user to the manual page when clicked. 

● Application Title – Displays the title of the application. 

● Questionnaire Container – Container that holds questions. 

● Question – Question in the questionnaire. Each question has the same format 

consisting of the following elements: 

○ Number – Question’s place in the questionnaire. 

○ Content – Question that the user is asked. 

○ Hint Icon – Icon next to the content that presents a textbox that explains 

the question to the user when held on to or hovered over. 

○ Answer Buttons – Radio buttons beneath the content that the user can 

select to indicate their answer to the question. Only one button can be 

selected per question. 

● Control Buttons – Section beneath the questionnaire that contains buttons that 

can be used to control the questionnaire. It contains the following buttons: 

○ Submit Button – Sends answers to the questionnaire to be processed and 

directs the user to the result page when clicked. 

○ Clear Button – Resets all answers in the questionnaire to their default (i.e. 

N/A) when clicked.  

 

Results Page 

● Help Manual Button – Directs the user to the manual page when clicked. 

● Application Title – Displays the title of the application. 

● Result Container – Container that holds the results of the questionnaire, including 

the accessibility score and tip elements. 

● Accessibility Score – Percentage calculated using the answers that the user gave 

to the questionnaire. It is represented as text. 

● Accessibility Rating – Textual representation of the score bar. 

● Score Bar – Graphical representation of the accessibility score as a progress bar. 

It consists of the following elements: 



28 

○ Categories – Equal width sections on the score bar with the following 

labels going left (low score) to right (high score): bad, fair, good, great, 

excellent.  

○ Progress – Color bar beneath the categories whose width is identical to 

the accessibility score. It indicates the category that score is in. 

● Tips – Section within the result container that contains tips. 

○ Tips Title - Displays the title of the tips section within the tips section. 

○ Tip – Text which indicates how the user can improve their accessibility 

score, or provide more “Yes” answers in the questionnaire. 

● Home Button – Directs the user to the home page when clicked. 

 

Manual Page 

● Application Title – Displays the title of the application. 

● Manual Container – Container that holds user manual information. 

○ Manual Title – Displays the title of the manual within the container. 

○ Manual Content – Content that is presented in the manual, including 

instructions to assist the user in using the application. 

● Home Button – Directs the user to the home page when clicked. 

 

4.2 Interface Design Rules 

 The user interface has a couple universal design conventions. The first being the 

font. The UI uses Verdana font for every piece of text. This was chosen because it looks 

nice and it has good readability. Another almost universal design standard is that text is 

bolded. The title, questions, buttons, score, and sections are all bold font weight. The 

only things that don’t use bold text are the question answers and accessibility tips. 

 

 When it comes to color, blue was chosen as the whole site background. The 

same blue is also used for the score bar, and a darker blue was chosen for the question 

hints. All of the containers and buttons use white as their background color. All text 



29 

inside the containers and buttons is a regular black, and the borders to containers and 

buttons are also black. The title was chosen to be yellow just to add a little bit of 

brightness and variety in color to the website. 

4.3 Components Available 

The application currently has 4 main UI components available for implementation 

into the final package. The first is the website design. Design has been mostly 

completed for the UI, and the basic layout/design of the website has been implemented 

into a rudimentary and working prototype. The other 3 UI components available are the 

skeletons for each webpage. 

 

The home page has the containers for the questionnaire setup and the questions 

designed. The questionnaire still needs to be implemented with the question database 

to load the questions into the webpage but the design for that is complete. The hints 

also need to be generated and their functionality implemented. The results page is also 

complete in design except that it needs to be implemented with the database as well to 

display accessibility tips. The score processing system also needs to be implemented 

between these two pages to give the user an accessibility score. The last thing that has 

been completed is the manual page. The container is all set except help documentation 

may need to be refined for completeness and altered based on changes to be ready for 

full release. 

4.4 UIDS Description 

The prototype user interface presented in this section of the document was 

developed using visual studio code to edit html/css and the live server extension to run 

javascript code on it. The UI contains 3 HTML files: 1 for each webpage on the app. It 

also contains 4 css files: 1 for global use and 1 css file for every page. There are 3 

javascript files: 1 for global use, 1 for the home page, and 1 for the results page. Finally 

there is a JSON file for the questions and related content that will be loaded into the UI.  



30 

5.0 Restrictions, Limitations, and Constraints 

The development team was restricted on time to complete this design document. 

The development team had less than a month to determine what tiny tool that they 

would focus on and the basic functionalities and features needed to help the user 

determine their application’s accessibility. We had to make sure to delegate the 

workload evenly and complete each section to the best of our ability to create a great 

tiny tool. 

Another constraint is the length of the questionnaire. It should be able to be 

completed within a ten to fifteen minute interval to maximize the efficiency and 

effectiveness of the website. If the questionnaire is too long, it could overwhelm the user 

and could cause the data to be inconclusive. The questions need to be specific and 

intentional to provide the best analysis of the application and eliminate redundancies. 

The length of the questionnaire will focus on the qualitative, yes or no, questions. 

The website must be able to scale with the user’s screen and be able to be 

viewed and used effectively on mobile devices as well as traditional browsers. All 

functionality and features need to be available on all screens. The questions must be 

easy to read, and more information/clarification to each question must be provided to 

the user in the form of hints, when needed. The navigation of the questions must be 

clear and separated into different sections based on the type of question. All the 

questions need to be on the home page and all the answers and tips need to be on the 

result page.  

The site must conduct accurate calculations quickly, and the results page must 

load within 5 seconds of the user selecting the ‘submit’ button. The calculations need to 

be correct and provide a good assessment of the user’s application. The weight 

distribution for the yes or no questions need to also represent the importance to the 

overall application. If the weight distribution is incorrect, the application in question could 

be evaluated incorrectly and provide the user with faulty information. These constraints 

are also outlined in the Performance Bounds (Section 6.3). 



31 

6.0 Testing Issues 

6.1 Classes of Tests 

For more detailed information regarding testing strategy, procedure, and 

classification, see the test plan for this system. 

Testing will be conducted in two ways. Black box testing will have defined inputs 

and outputs, which will be defined below in Section 6.2. It will be divided into three 

sections: functional testing, non-functional testing (for improvements on efficiency, user 

experience, and other features), and regression testing. Functional and non-functional 

testing will be conducted after each step of coding, and will be repeated as necessary 

with regression testing as changes are made. For the questionnaire, yes and no 

questions will be tested to ensure that the correct points are tabulated. 

White box testing will test the inner functionality of the code, specifically the 

calculations that result in the final accessibility score and the weighted table. This is 

something that we cannot test exclusively with black box testing because black-box 

testing only provides testers with access to inputs and outputs. This will be done by 

setting test flags at key points within the code to check each step of the calculation and 

checking that all the weights are working correctly. Similarly, regression testing will be 

performed here as well to ensure that subsequent changes are not impacting previous 

code. 

6.2 Expected Software Response 

For more detailed test cases, see the test plan for this system. 

 

Black Box 

ID# Test Expected Results 

B1 Webpage loads in browser Webpage loads within five seconds. 

B2 Questions added to the 
database are displayed in the UI 

Questions are added to the database and updated in 
the UI. 

B3 ‘Yes’ responses are totaled The final score reflects the responses provided by the 



32 

user. 

B4 Tips to ‘no’ responses displayed Relevant tips are displayed below the final result. 

B5 ‘?’ provides a hint when clicked When the user selects the button next to the question, a 
corresponding hit about the purpose of the question 
shows. 

B6 No score or tip is provided when 
the user selects ‘NA’ 

No changes to the output for assessments that do not 
apply to the application being tested by the user. 

B7 All user responses are displayed 
on the results page. 

View all questions and answers 

B8 Final result will be displayed Correct total of all answers is displayed 

B9 Progress bar with quality 
description is displayed 

Correct results will be applied based on a conversion 
from raw score. 

B10 View user manual When the user clicks the button, they are able to 
navigate to the user manual page 

B11 Return Home Anywhere in the webpage, the user is able to click the 
home button and they return to the original questions 
screen. 

B12 Navigate to results page Once the user selects to submit their responses they 
are automatically sent to the results page. 

 

White Box 

ID# Test Execution Expected Results 

W1 Question Score 
Assignment 

After each question, print out 
the new score to verify the 
correct sum. 

If ‘yes’, then the score is added to 
the total application score. 

W2 Time Metric Score 
Total 

As the user traverses the 
website and adds time to their 
total, the new total is printed. 

The appropriate amount of time is 
added for each action as the user 
navigates the website. 

 

6.3 Performance Bounds 

1. Loading Time – Browser must load the page within 5 seconds. 

2. Result Delay – Time between submitting the questionnaire and displaying the 



33 

results must be less than 5 seconds. 

3. Question Number – Expected test metrics should be met as long as the number 

of questions in the questionnaire is less than or equal to 25. 

4. Average Time – Average time spent answering questions on the questionnaire 

must be less than 15 minutes. 

6.4 Identification of Critical Components 

 Critical components of this program will all stem from the host server. Within the 

actual program itself, collecting and displaying the questions from the database with 

their respective hints. These questions are the center of the program and not only must 

they function, but they must be formulated to highlight key components of the 

application they are assessing. For maintainability, the program should be able to 

update the current questions and add new ones when necessary. 

  



34 

7.0 Appendices 

7.1 Requirements Traceability Matrix 

Requirements Traceability Matrix 

Project Name: Website Accessibility Checklist (WAC) 

Business 
Requirements 

Document (BRD) 

Functional Requirements Document (FSD) Testing Document 

BR ID# Business 
Requirement 

FR ID# Functional Requirement Priority Test Case 
ID# 

BR_1 Navigation FR_1 Webpage loads in browser High B1 

  FR_2 User can read hints to supplement the question 
information 

Medium B5 

  FR_3 User can read user manual Medium B10 

  FR_4 User can return home from anywhere on the 
website 

Medium B11 

  FR_5 Software automatically navigates to the results 
page when users submit 

High B12 

BR_2 Questions FR_8 Questions manually added to the database are 
displayed in the UI 

High B2 

  FR_9 Yes responses are totaled High B3 
W1 

  FR_10 No responses are saved and tips for each are 
displayed on the results page 

High B4 
W1 

  FR_11 User can input qualitative data into the chart High W2 

BR_3 Results FR_13 No score or tip when user selects NA High B6 

  FR_14 All user responses are displayed High B7 
B12 
W1 
W2 



35 

  FR_15 Final result is displayed correctly High B8 
W1 
W2 

  FR_16 Progress bar with quality description is 
displayed 

Low B9 

 

7.2 Packaging and Installation Issues 

 For the packaging of this software, the development team decided to use a zip 

file to contain the software. A zip file is easy to use and can hold all the software that 

creates this tiny tool. The zip file can be sent through email, canvas or on a flash drive, 

making this packaging portable. It shouldn’t hinder the usability of the software and 

should help the user quickly access the software.  

 

 The installation should be straightforward using a zip file. The user just needs to 

unzip the file and have a web browser to access this questionnaire. To unzip the file, the 

user would either have to open it from their email or canvas or insert a flash drive into 

their computer. The questionnaire should have no problems, while running after 

installation.  

7.3 Design Metrics to be Used 

To evaluate your design we will use a few different design analysis metrics. This 

is actually very similar to the website we are designing, and we will be using similar 

strategies ourselves. 

1. System Usability Scale (SUS) - a ten question survey to be given to users at the 

end which will gauge the initial usability. 

2. Time on Task - this will measure the average amount of time that users spend on 

the website. 

3. Task Accomplishment Rate - industry standards is around a seventy-five percent 

task completion rate, but for a site as simple as ours the rate should be as close 

to 100% as possible. 



36 

4. Error Rate - this counts the number of errors that the user makes, which will help 

us mitigate them and evaluate the quality of the end product. 

7.4 Supplementary Information 

“10 Most Common Web Accessibility Issues to Solve For.” BrowserStack, 2 Sept. 2022, 

https://www.browserstack.com/guide/common-web-accessibility-issues.  

Hamilton, Thomas. “White Box Testing – What Is, Techniques” Guru99, 15 Sept. 2022, 

https://www.guru99.com/white-box-testing.html.  

“Introducing JSON.” JSON, https://www.json.org/json-en.html. 

Kumar, Nishant. “How the Model View Controller Architecture Works – MVC Explained.” 

FreeCodeCamp.org, FreeCodeCamp.org, 30 July 2021, 

https://www.freecodecamp.org/news/model-view-architecture/.  

Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines Apply to Mobile, 

https://www.w3.org/TR/mobile-accessibility-mapping/.  

Mobile Web Application Best Practices, https://www.w3.org/TR/mwabp/.  

“MVC - MDN Web Docs Glossary: Definitions of Web-Related Terms: MDN.” MDN Web 

Docs Glossary: Definitions of Web-Related Terms | MDN, 

https://developer.mozilla.org/en-US/docs/Glossary/MVC.  

Pressman, Roger S. Software Engineering: A Practitioner's Approach 9th ed. 

MCGRAW-HILL COMPANIES (OH), 2005.  

“Understanding WCAG 2.1.” W3C, https://www.w3.org/WAI/WCAG21/Understanding/.  

“What Is Black Box Testing: Techniques” Learning Center, 24 Sept. 2020, 

https://www.imperva.com/learn/application-security/black-box-

testing/#:~:text=Black%20box%20testing%20can%20test,log%20in%20using%20wrong

%20credentials. 


	1.0 Introduction
	1.1 Goals and Objectives
	1.2 Statement of Scope
	1.3 Software Context
	1.4 Major Constraints

	2.0 Data Design
	2.1 Internal Software Data Structure
	2.2 Global Data Structure
	2.3 Temporary Data Structure
	2.4 Database Description

	3.0 Architectural and Component-Level Design
	3.1 Program Structure
	3.1.1 Architecture Diagram
	3.1.2 Alternatives

	3.2 Description of Components
	3.2.1 Question
	3.2.2 ChecklistHandler
	3.2.3 ChecklistView
	3.2.4 ResultView

	3.3 Software Interface Description
	3.3.1 External Machine Interfaces
	3.3.2 External System Interfaces
	3.3.3 Human Interface


	4.0 User Interface Design
	4.1 Description of the User Interface
	4.1.1 Screen Images
	4.1.2 Objects and Actions

	4.2 Interface Design Rules
	4.3 Components Available
	4.4 UIDS Description

	5.0 Restrictions, Limitations, and Constraints
	6.0 Testing Issues
	6.1 Classes of Tests
	6.2 Expected Software Response
	6.3 Performance Bounds
	6.4 Identification of Critical Components

	7.0 Appendices
	7.1 Requirements Traceability Matrix
	7.2 Packaging and Installation Issues
	7.3 Design Metrics to be Used
	7.4 Supplementary Information


